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SUMMARY

The important ultrasonic scattering mechanlsms for SIC and SI3N 4 ceramlc

composites have been identified by examlnlng the interaction of ultrasound
wlth Indlvldual fibers, pores, and gralns. The dominant scattering mechanisms

have been identified as asymmetric refractive scattering due to porosity gradi-

ents In the matrix material, and symmetric diffractive scattering at the fiber-

to-matrix Interface and at indlvldual pores. The effect of the ultrasonic
reflection coefficient and surface roughness on the ultrasonic evaluation has

been highlighted. A new nonintrusive ultrasonic evaluation technique, the

angular power spectrum scan (APSS), has been presented that is sensltive to
mIcrostructural variations In composites. Preliminary results Indicate that

the APSS wlll yleld informatlon on the composlte mlcrostructure that Is not

available by any other nondestructlve technique.
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INTRODUCTION

Advanced hlgh-temperature ceramics (ref. 1) are belng developed for use
in the next generatlon of aerospace systems. Recently, considerable attentlon

has been glven to monolithic SIC and Si3N 4 (ref. 2) for these hlgh-temperature

applications. Research on monolithic ceramics subsequently led to the current

developmental research on advanced hlgh-temperature ceramlc composltes. These

composites consist of particles, whiskers, or flbers In ceramic matrices. A

variety of processlng techniques are being investigated in an effort to produce

h_gh-temperature composites wlth optlmlzed thermal and mechanical propertles.
Plasma spraying, reaction bonding, slurry presslng, and slnterlng are typical

technlques used to produce hlgh-temperature ceramics. These processes often

result in a composite that has a wide varlablllty in mlcrostructure. Typi-

cally, mIcrostructural variations such as poroslty, agglomerates, graln size,
Interracial structure between phases, and orlentatlon of phases all play a

role In determining the materials properties. The importance and effects of
these and other mlcrostructural varlatlons on the composite materlals' thermal

and mechanical properties are being aggresslvely researched (refs. l to 8).

Ultrasonic C-scans and conventional x-ray radiography are routinely per-

formed for nondestructive evaluation of a variety of materials. These NDE

techniques reveal macroscopic internal features such as delamlnatlons, debonds,

porosity, and cracks. Each of these features is important when considering
the use of the tested material where strength and Integrlty must be assured.

However, standard ultrasonic C-scans and conventional x-ray radiography cannot

be expected to characterize the crucial mlnute variations in the ceramic
mlcrostructure that affect strength and toughness. For example, the character-

Izatlon of toughness llmltlng matrix-second phase interface is beyond the capa-
blllty of these standard technlques. Advanced NDE technologies can be expected
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to nonlntruslvely evaluate the second phase to matrix Interface in composites.

The goal of this work Is to move NDE technologles In the direction required

for asslstlng in the development of advanced ceramics. The prellmlnary results
shown here Indlcate that an advanced ultrasonlc scannlng technique and analysls

w111 be required for these composlte systems. A new nonlntruslve ultrasonlc

evaluatlon technlque called the angular power spectrum scan (APSS) is
discussed.
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SYMBOLS

angular power spectrum

angular power spectrum scan

flnal amplltude

ultrasonic wave of known amplltude

dlstance between adjacent fiber edges

pore diameter

buffer rod-couplant-sample

back surface echoes

distance between fiber centers

front surface

Intenslty at x : 0 or r . 0

Bessel function

number of flbers

preclslon acoustlc scannlng system

degree of fiber opacity

back reflection coefflclent

front reflection coefflclent

radial distance from beam axis on the image plane

complex wave speed

slgnal-to-nolse ratlo of the input ultrasonlc pulse

sample thickness

dlstance perpendicular to fiber axis on the image plane
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distance between pore, or f|ber, and the Image plane

measured attenuation

polar angle

angle of Incldence

wavelength

variance

uncertainty In attenuatlon measurement

azlmuthal angle

Subscrlpts

L Incident wave

m medlum through whlch wave propagates

IL longltudlnal Incldent wave

In long|tudlnal wave propagatlon

2L shear Incldent wave

2n shear wave propagation

BACKGROUND

Ultrasonlc Imaglng can be done by means of several technlques. The most
common Is the one used by commerclally available ultrasonic Immerslon
C-scannlng systems. An ultrasonic wave of known amplltude Ao Is transmltted
through a sample as shown in figure I. The final amplitude Af, or C-scan
Image, Is a representatlon of relative attenuatlon, or energy lost, by the
ultrasonic wave as it traverses through the sample. Unfortunately, C-scan
Images are not true representations of the energy lost by the ultrasonic wave
as It travels through the sample. The ultrasonic reflectlon coefficients at
the water-to-sample Interfaces are not generally imaged. These reflectlon
coefflclents are large and must be Included in the analysls for determlnatlon
of the attenuation. The reflection coefflclent |s used to determine the accu-

racy of an acoustic Image. It can also be used to determine the most accurate
acoustlc Imaging technique to use.

In order to obtaln the reflectlon coefflclent at the back surface, a modl-

fied two-transducer arrangement must be used (fig. 2) where the transducers
are both transmitters and receivers. The variance o_ In the attenuatlon

measurement for thls Immersion arrangement Is given by reference 9
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FIGURE 1. - STANDARD IMMERSION ULTRASONIC C-SCANNING ARRANGE/'WZNT.
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FIGURE 2. - MODIFIED IMMERSION ULTRASONIC SCANNING ARRANGEMENT NEEDED TO

DETERMINE REFLECTION COEFFICIENTS AT FRONT AND BACK SURFACES. ULTRASONIC

WAVE OF KNOWN _LITUDE, AO; FINAL AMPLITUDE, Af.
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where SIN Is the slgnal-to-nolse ratlo of the Input ultrasonic pulse, a Is

the measured attenuation, Rf and Rb are the reflection coefficient magni-
tudes on the Front and back surface of the sample, respectively, and x Is

the sample thickness.

Ceramics generally have immersion reflection coefficients of about 0.92.

Thls corresponds to an uncertalnty of about 15 to 30 percent. If we are to

understand the interaction of ultrasonic waves wlth ceramics systems, we need

the most accurate evaluation technique available.

An alternatlve technlque to immerslon scanning Is contact scannlng. This

technlque uses a precision acoustic scanning system (PASS) that Is described
In detail elsewhere (refs. 10 to 13). Briefly, a single transducer is used to

make precise and accurate attenuatlon measurements. The experimental arrange-
ment for contact ultrasonic measurements Is shown In flgure 3. An ultrasonlc

wave Is Introduced Into the sample vla the buffer rod-couplant-sample (BCS)

interface. The ultrasonlc wave subsequently echoes within the sample. By

measurlng the reflection coefficient
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FIGURE 3. - CONFIGURATION FOR CONTACTULTRASONIC MEASUREMENTS.



the approprlate echoes, the ultrasonic attenuation can be determined.

lance In the attenuation measurement for thls arrangement Is glven by
reference 12:

The var-

_2R2 ]
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1/2

(2)

Note that the sample need not be alr-backed. That Is, Rb may be <I. Ceramics

generally have contact reflection coefficients of about 0.5. Thls corresponds

to a variance of about 7 to 15 percent.

Equatlons (I) and (2) are graphically shown In figure 4. The configura-
tion havlng the lowest varlance values obta|ned from equations (1) and (2) Is

shown. The solid line In the f|gure can be used to make a decision about which

technlque should be applied for a partlcular experimental sample. Above the

solld line, a precision contact pulse-echo measurement is preferred. Below

the solld llne, an Immerslon through transmlsslon yields the least uncertalnty
In the attenuatlon measurement.
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FIGURE 4. - UNCERTAINTY IN ATTENUATION AS FUNCTION OF

FRONT AND BACK SURFACE REFLECTION COEFFICIENTS FOR

BOTH IMMERSION AND CONTACT ULTRASONIC SCANNING. CON-

TACT SCANNING METHOD IS MORE ACCURATE ABOVE THE SOLID

LINE. LONG-DASHED LINE INDICATES THE UNCERTAINTY FOR

THE IMMERSION ARRANGEMENT WHERE THE SAMPLE HAS IDENTI-

CAL REFLECTION COEFFICIENTS ON BOTH SIDES. HERE 20X =

I, 0 = I, AND O' = LOG [O0/O(S/N)].
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Immersion ultrasonic systems generally have similar reflectlon coeffl-

clents for Rf and Rb. The variance Is symmetric wlth respect to the Rf = Rb
axls for Immersion measurements. The long dashed llne In figure 4 Indicates

the path used to determine the variance. The stated reflection coefficients

are for acoustically flat (i.e., flat when compared with the ultrasonic wave-

length) specimens. Any additional roughness will further increase the reflec-

tion coefficient. Many solid materlals wi11 flt on thls curve between 0.84 and
0.97.

Figure 5 shows the varlance for PMMA, PMC, AI, Pb, SlC, AI302, NI, W, and

SI3N 4 for both immersion (Rf = Rb) and contact ultrasonic methods. When evalu-

ating NI, SiC, SI3N 4, AI302, and W, the contact pulse-echo method yields the
least uncertain and most accurate attenuation measurement. Therefore, contact

scanning should be, and Is, used here for evaluating the monollthlc ceramic
matrix material.
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FIGURE 5. - UNCERTAINTY COMPARISONFOR SEVERAL MATERIALS. FOR AI302,

Ni, W, SiC, AND Si3N 4 THE UNCERTAINTY IS LOWERWHENUSING A CONTACT
SCANNING METHOD. THE CURVESARE GENERATEDFROMEOUATIONS 1 AND 2.

THE DASHEDLINE IS FOR THE IMMERSION CASE. THE SOLID LINE IS FOR

THE CONTACT CASE. THE DASHED-DOI-II_DLINE INDICATES THE MINIMUM UN-

CERTAINLY"VAL_ THAT THE CONTACT METHOD CAN YIELD. HERE 2aX = I,

o = 1, AND o' = LOG [Oa/O(S/N)].

APPROACH

Ultrasonic evaluation of composltes may be approached from two directions.

The complete composite system can be interrogated as a whole system. The
resultant ultrasonic signals are complicated and difficult to interpret. Since

the actual mechanisms that are forming these signals remaln unknown, their

interpretation is subject to question. An alternatlve to this approach Is to
expllcltly determine the Interaction of ultrasound wlth each Indlvldual



component, or phase, of the composlte. Thls Informatlon Is then used for for-
mulatlng theories that explaln the ultrasonlc slgnals obtained from the full
composite system. The latter approach is used for thls work.

SCATTERING DUE TO GRAIN BOUNDARIES

The matrix materials SiC and SI3N 4 are acoustically slmllar; that Is,

they have similar but not identical densities, ultrasonlc velocities, ultra-
sonic attenuation, and elastic modull (see table I). The ultrasonic attenua-

tlon (for frequencies below 50 MHz) due to grain boundary scattering has been

found to be negllglble for nearly fully dense SIC and SI3N 4 having grain sizes

less than 15 Nm (refs. II and 12). Therefore, grain boundary scattering need

not be considered for SIC and $13N 4 matrix materla1.

Materlal

SiC

SI3N4

Density,

glcc

3.12

3.28

TABLE I

Young's
modulus,

GPa

440

310

Velocity,

cm/_sec

1.22

1.09

Attenuatlon,

Nlcm,
50 MHz

<0.I
<0.1

SCATTERING DUE TO PORES

The Interaction of ultrasonic waves with Individual pores is well under-

stood. When an ultrasonic wave interacts with a pore, a spherical wave Is

generated at the pore site. The spherical wave interacts with the maln beam to
form a diffraction pattern. The Intensity observed at the plane perpendlcular

to the sound direction Is given by the relation (ref. 14)

(3)

where Jl is the Bessel functlon, a' Is the pore diameter, z is the distance
between the pore and the Image plane, r is the radial distance from the beam

axis on the image plane, and Io Is the intensity at r - O.

The spherical wave and diffraction pattern are observable by many ultra-
sonic Imaging techniques. The ultrasonic surface wave and longitudinal wave

images in figure 6 reveal the spherical wave and spherical diffraction pattern,

respectively, from a single subsurface pore. The ultrasonic energy is symmet-

rically scattered to form a cylindrically symmetric pattern on a plane perpen-
dicular to the beam axis.

A composlte generally has many pores dlspersed throughout the matrix.

The energy scattered from these pores is not observable as Individual ring pat-
terns. The patterns overlap and form a uniform cylindrically symmetrlc inten-

sity background. Increasing the number of pores (with the same dlameter) per
unlt volume will result in an increased amount of scattering per unit volume

8
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(a) SURFACE WAVE IMAGE RE-
VEALING SUBSURFACEPORE IN

SiC.

(b) SCANNING LASER ACOUSTIC MICROSCOPE

IMAGE REVEALING A SUBSURFACEPORE IN

SiO 2. ONLY THE RIGHT HALF OF THE
DIFFRACTION PATTERN IS VISIBLE BE-

CAUSE OF THE EXPERIMENTAL CONFiGURA-
TION.

FIGURE 6. - ULTRASONIC IMAGES OF SUBSURFACEPORES,

and, therefore, a decrease In tntensltles. It is noted here that partially or
Incompletely bonded regions between composite lamina are ultrasonically equiva-
lent to reglons of increased porosity. Therefore, a cylindrically symmetric
decrease In intensity can be due to increased matrix porosity or incomplete
Interlaminar bonding.

SCATTERING DUE TO POROSITY GRADIENTS

Refraction of waves occurs at boundaries that are veloclty mismatched.

For planar boundaries between elastic media (e.g., the boundary between
medium I and medium 2), longitudinal and shear waves are refracted and

reflected at the boundary at an angle determined by the well-known Snell's
law for elastic media (ref. 15):

FSmn],,n
sln *Lmn LSlL]

(4)

where e' and _ are the angles measured from the surface normal vector (e'
is also the Incident angle), and S Is the complex wave speed. The sub-

script L corresponds to longitudinal (L = 1) or shear (L - 2) incident

wave. The subscript m Indicates which medium, l or 2, the wave is propagat-

ing through. The subscrlpt n denotes longitudinal (n - l) or shear (n = 2)

wave propagation.

The ultrasonic velocity and attenuation images for a specimen of SlC are

shown in figure 7. The ultrasonic velocity In porous media is linearly related

to the density (ref. 16). The high velocity region in the upper left of the

figure corresponds to a high density region. The hlgh attenuation band In the

attenuation Image is of particular interest. This high attenuation band occurs
at the density gradient boundary existing between hlgh and low density reglons.
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FIGURE 7. - ULTRASONIC VELOCITY AND ATTENUATION IMAGES FOR SiC OBTAINED BY

PRECISION ACOUSTIC SCANNING SYSTEM (PASS).

The velocity gradlents yield hlgh attenuation due to refractive scatter-
Ing at thls boundary. That Is, the acoustic energy Is belng redirected,

because of refraction and reflection, from the maln acoustic beam. Therefore,

regions of hlgh attenuation may Indicate the presence of density gradlents and

not necessarily flaws. Refractive scattering Is, In general, asymmetric wlth

respect to the Inltla] direction, or beam axis; that is, If energy Is refrac-

tively scattered off at an angle +_, then energy wll] not, simultaneously, be

scattered off at the symmetric angle -_.

SCATTERING DUE TO FIBERS

The interaction of ultrasound with continuous fibers Is analogous to the
interaction of light wlth silt-shaped apertures. The Intenslty of the scat-

tered wave from a set of parallel fibers embedded In a matrix Is given by
reference 17,

I = O[ 6_ _ _in2 Y j
_a _d sin c - -- (5)B = E" sin ¢, Y = X _ - tan 1 zX'

where z Is the distance between the fiber and the image plane, x' Is the

distance perpendicu|ar to the fiber axls on the Image plane, a Is the distance

between adjacent fiber edges, d Is the distance between fiber centers, N Is

the number of fibers, and Io Is the intensity at x - O. Here it Is assumed

that the fibers are acoustically opaque. The wave Is transmltted through the

lO



grating vla the matrix material between adjacent fibers. If we let N = 1
then we have the solution for a single fiber in a matrix.

If the flbers are not acoustically opaque, then the Intenslty observed has

two components. One component is caused by a unlform background (e.g., let
the flbers be constructed of material Identlcal to the matrix, and perfectly

bonded to the matrlx). The other component Is caused by a grating (eq. (5))

where the maximum Intenslty of the dlffractlve component Io Is replaced by

pIo. The degree of opaclty of the fibers p varles between fully opaque

(p : l) and fully transmitting (p = 0).

The opacity of the flbers embedded In a matrlx material Is determined by

both the fiber materlal and the degree of bondlng between the flber and the

matrix. For example, If the fiber and the matrlx are both of the same mate-

rlal and the fiber Is perfectly bonded, then p - 0 so that no dlffractlon

w111 occur. If the same flber Is completely dlsbonded from the matrix, then

p , l and dlffractlon wlll occur to yield the maximum posslble intensity of

the dlffractlve component, Io. Alternatlvely, if the flber material Is differ-
ent from that of the matrlx and Is perfectly bonded, then the opacity w111

always be greater than zero and less than one. That is, dlffractlve scatterlng

wlll always occur. A completely dlsbonded flber, p : l, w111 have identical
results whether the fiber materlal Is slmllar or dissimilar to the matrlx

material.

In order to evaluate the Interactlon of ultrasound wlth flbers embedded

In a matrix materlal, a single fiber composite system is used. Figure 8 shows

an ultrasonic backscattered image of a single surface-breaklng SIC fiber in a

$13N 4 matrix. The fiber is 1.5 cm long and 140 _m In diameter. In the upper
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part of the figure, the fiber is exposed to the surface and does not show any
diffraction effects. The flber Is subsurface in the lower part of the Figure
and exhibits a strong diffraction effect analogous to an optlcal single-slit
dlffractlon pattern. The diffraction pattern is symmetric with respect to the
fiber axis. The two dark circular areas at the ends of the fiber are regions

of mlcrocracklng and porosity that formed during the stntertng process. The
lower subsurface crack zone exhibits a circularly symmetric diffraction pat-
tern slmtlar to that found for subsurface pores (fig. 6).

SUMMARY OF SCATTERING MECHANISMS

The domlnant scatterlng mechanlsms for ceramic composltes are:

(1) Symmetric diffractive scattering at Indlvldual pores

(2) Symmetrlc diffractive scatterlng at fibers

(3) Asymmetric refractive scattering at density gradients

Grain boundary scattering has been found to be negllgible. The above 11st of
ultrasonic scattering mechanisms can be used to Identlfy an ultrasonic tech-

nlque for evaluating ceramic composites. The key factor in the above list Is

the symmetry of the scattered energy. Thls factor Is the main guide In devel-

oplng an appropriate ultrasonic evaluation technique for ceramic composites.

ANGULAR POWER SPECTRUM

The angular (polar) power spectrum (APS) of the wave transmitted through

a composite wlll contaln all the Informatlon on each of the above scattering

mechanisms. One posslblearrangement for det_rmlnlng the angular power spec-

trum is shown In figure 9(a). The angular power spectrum Is obtained at a

point by moving the receiver, at a fixed radii, over the half-space containing
the transmltted signal. Here the incident wave Is transmitted and scattered

by the presence of the composite specimen. A receiving transducer Is scanned

in an angular fashion to determine the energy scattered In the hemisphere

described by -90 ° _ e _ 90° and 0 _ ¢ < 180°. Thls may also be done with

elther a planar or nonplanar array of transducers or a slngle or multlpie
tranducer(s) rotated about the e and ¢ axes. Many other rotation and array

design combinations may be used to determine the APS. The mlcrostructure of

the composites varles through the bulk of the specimen; therefore, a scanning

arrangement wll] be required to obtain a complete APSS of the specimen.

Asymmetric components In the APS are indications of porosity or density
gradients. The presence of continuous fibers in multldlrectlonal composites

wlli yield power spectrums that are symmetric with respect to the fiber axes.

If there are N uniformly spaced fiber directions perpendicular to the inci-

dent sound, then the power spectrum will be 2N-fold symmetrlc with respect to
the Incldent sound direction. The width of the spectrum Is a function of

angle, ¢, and is affected by the poroslty_the number of flber layers, the
fiber diameter, the distance between the fibers, and the degree of bonding

between the flber and the matrix. The amplitude of the spectrum along the
main beam axls indicates the total amount of energy scattered out of the maln

beam due to all of the above mechanisms.

12
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FIGURE 9. - ANGULAR POWER SPECTRUM (APS) OF WAVE TRANSMITTED THROUGH A

COMPOSTTE,

The interpretation of the APS Is best described by examples. Assume that,
for a particular composite system, the fiber diameters are uniform, the fiber

spacings are uniformly repetitive, and the fiber-to-matrix bond is uniform

everywhere. An APS constant power contour level for a 0°/90 ° composite system

should appear as shown in figure 9(b). Thls APS Is four-fold symmetric wlth

respect to the beam axis. A uniform increase (or decrease) in porosity
throughout the sample will Increase (or decrease) the diameter D of the cir-

cularly symmetric constant power component of the APS (figs. 9(b) and (c)).

If the bonding between the matrix and the fiber Is weakened (p - 1) then the

amplitude of the four-fold symmetrlc diffraction pattern wlll increase. If

there are poros|ty gradients present, the component of the APS due to porosity

will form an asymmetric shape as shown In the dotted curve In f_gure 9(b).

PRELIMINARY EXPERIMENTAL RESULTS

Two Identlcally produced SIC/SiC laminates wlth 0o/90 ° Nicalon fabric com-

posites were used. Conventional radlographlc and ultrasonic C-scan Images are
shown In flgure lO for speclmens labeled A and B. The two radlographlc images

appear slmIIar. Systematic variations In density are observed in both speci-

mens as a series of O.5-cm-dlam dark disks spaced about 1.5 cm apart. These

dark regions correspond to high density regions. The fiber weave pattern can

also be observed in radiographs.

13



Ultrasonic C-scans at lO MHz(flg. I0) reveal quite different results.

The ultrasonic image of sample A is more uniform and darker (dark (light)

corresponds to poor (good) ultrasonic transmission) than that of sample B.

This Indicates poor InterIamlnar bonding In sample A. A very porous system

could also produce thls type of image. However, the radiographs indicate that

the porosity for the two specimens Is similar. The ultrasonic image for speci-

men B has a large amount of fluctuations in the Intensity and has the appear-

ance of being blurred.

t_

lcm

X-RAY IMAGE ULTRASONIC IMAGE

FIGURE 10. - RADIOGRAPHIC AND ULTRASONIC C-SCAN IMAGES.

2X

A complete APSS system has not yet been developed. In lleu of this, a

partial APS was done at IO MHz by holding one angle constant (¢ = 0°) and

-60 ° < e _ 60°. Figure If(a) shows the APS without the sample present. The

symmetry of the signal Indicates that the transmltter and receiver have rela-

tively symmetric responses. The partial APS at the points labeled P on speci-

mens A and B are shown in figures 11(b) and (c), respectlvely. The APS's are
normalized to have a maximum amplitude of one. The APS for specimen A Is rela-

tively symmetric and Indicates that thls region Is relatively free of porosity

gradients. In contrast, the APS for specimen B Is asymmetric and indicates

the presence of poroslty gradients. These gradients may be due to variations
In the Interlamlnar bond at this point.

_GOo 0o 60°

O

(a) SIGNAL WIIIIOUT SPECIMENS.

_600 0o 60o

(b) SPECIMEN A: ALMOST SYMMETRIC AT

_GOo 0o GO°

(c) SPECIMEN B: ASYI_tETRICAT POINT P.

POINT P.

FIGURE 11. - PARTIAL ANGULAR POWER SPECTRUM (® = O) FOR WOVEN COMPOSITES.

(POINT P IS SHOWN IN FIG. 10.)
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A quas1-APSwas done by letting @= 0°, -60 ° _ e < 60° , and moving the
receiving transducer along a llne parallel to the speclmen surface and along

the e-axis of rotation. The resulting Images are shown In figure 12. Fig-

ures 12(a) to (c) are quasl-APS images wlthout the sample present, and for

speclmens A and B, respectively. A visual comparison between flgures ll(b)
and (c) dramatlcally reveals the presence and effect of asymmetric scatterlng

detected by the APS technique.

(a) SIGNALWITHOUTSPECIMEN.

(b) ALMOSTSYMMETRICAT POINT P FOR SPECIMENA.

-600 60o

(c) ASYMMETRICAT POINT P FOR SPECIMENB.

FIGURE 12. - QUASI-APS(ANGULARPOWER SPECTRUMWITH® = O) FOR WOVEN COM-

POSIES. (POINTP IS SHOWN IN FIG. 10.)
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